Ознакомительная версия.
предполагается, что она следует каждым из возможных путей в пространстве-времени. Каждой такой истории соответствует пара чисел, одно из которых характеризует размеры волны, а второе — ее положение в цикле, то есть фазу.
Вероятность того, что частица, скажем, минует некоторые особые точки, определяется путем сложения волн, связанных с каждой возможной историей, которая проходит через эту точку. Однако практические попытки выполнить это сложение обычно наталкиваются на серьезные технические трудности. Единственный способ обойти их — последовать такому своеобразному предписанию: нужно складывать волны для историй частиц, которые происходят не в реальном времени, привычном для нас, а в мнимом.
Выражение «мнимое время» словно бы взято из научной фантастики, но на самом деле это точно определенное математическое понятие. Чтобы избежать технических трудностей при фейнмановском суммировании по историям, следует использовать мнимое время. Это оказывает интересное влияние на пространство-время: различие между пространством и временем совершенно стирается. Пространство-время, в котором событиям соответствуют мнимые значения временных координат, признается евклидовым, потому что метрика определенно-положительна.
В евклидовом пространстве-времени нет разницы между направлением времени и направлениями в пространстве. С другой стороны, в реальном пространстве-времени, где события характеризуются реальными значениями временных координат, разницу установить легко. Направление времени лежит внутри светового конуса, а пространственные направления — вне его. Можно посчитать, что использование мнимого времени просто-напросто математический прием, уловка, помогающая вычислить результаты для реального пространства-времени. Однако может статься, что этим дело
не ограничивается. Возможно, что евклидово пространство-время — фундаментальное понятие, а наши представления о реальном пространстве-времени не более чем плод воображения.
Когда мы применяем для Вселенной фейнмановский метод суммирования по историям, аналогом истории частицы выступает уже все искривленное пространство-время, которое представляет историю всей Вселенной. По техническим причинам, о которых говорилось выше, это искривленное пространство-время должно восприниматься как евклидово. Иначе говоря, время является мнимым и неотличимо от направлений в пространстве. Для того чтобы вычислить вероятность обнаружения реального пространства-времени с заданными характеристиками, нужно сложить волны, связанные с теми траекториями в мнимом времени, которые обладают требуемыми характеристиками. Проделав вычисления, можно получить вероятностную историю Вселенной в реальном времени.
Отсутствие граничных условий
В классической теории тяготения, в основе которой лежит реальное пространство-время, имеется лишь два возможных варианта поведения Вселенной. Она или существовала вечно, или берет начало в сингулярности в некоторый конечный момент прошлого. Теоремы о сингулярности показывают, что должен был иметь место второй вариант. С другой стороны, квантовая теория гравитации предлагает третью возможность. Поскольку мы имеем дело с евклидовым пространством-временем, в котором направление времени уравнено с направлениями в пространстве, пространство-время может быть конечным по протяженности, но при этом
не иметь сингулярностей, которые формируют границу или край. Пространство-время в этом случае будет подобно поверхности Земли, только с двумя дополнительными измерениями. Поверхность Земли конечна по протяженности, но не имеет границы или края. Отплыв на запад, вы не упадете с края света и не натолкнетесь на сингулярность. Уж я-то знаю, потому что огибал земной шар.
В евклидовом пространстве-времени, двигаясь назад к бесконечному мнимому времени или чему-то другому, начинающемуся в сингулярности, мы, как и в классической теории, столкнемся с проблемой определения начального состояния Вселенной. Бог может знать, как началась Вселенная, но мы не в состоянии привести каких-либо особых доводов в пользу того, что она зарождалась так, а не иначе. С другой стороны, квантовая теория гравитации открыла новую возможность: пространство-время вообще не имеет границ. Так что нет нужды устанавливать их поведение. Нет ни сингулярностей, в которых нарушаются законы физики, ни края пространства-времени, который заставил бы нас апеллировать к Богу или выводить новый закон граничных условий пространства-времени. Скажем так: граничные условия для Вселенной состоят в отсутствии у нее границ. Вселенная должна быть абсолютно замкнутой и независимой от чего-либо лежащего вне ее. Ее нельзя ни создать, ни уничтожить. Она должна просто существовать.
Именно на конференции в Ватикане я впервые выдвинул предположение, что, возможно, время и пространство вместе образуют поверхность конечных размеров, не имеющую границы или края. Мой доклад был, однако, скорее математическим, поэтому напрашивающиеся из него выводы о роли Бога в сотворении Вселенной ускользнули тогда от внимания слушателей (и моего тоже). Во время ватиканской конференции я не знал, как использовать идею отсутствия
границ для прогнозов о Вселенной. Следующее лето я провел в Университете Калифорнии в Санта-Барбаре. Мой друг и коллега Джим Хартл помог мне сформулировать условия, которым должна удовлетворять Вселенная, если у пространства-времени нет границы.
Должен подчеркнуть, что эта идея о конечном пространстве-времени, не имеющем границы, всего лишь предположение. Она не выводится логически из каких-либо других принципов. Как и любая другая научная теория, она могла быть изначально подсказана эстетическими или метафизическими соображениями, подтвердить же ее истинность должно соответствие теоретических предсказаний наблюдениям. Однако в случае квантовой механики произвести такую проверку весьма затруднительно, и на то есть две причины. Во-первых, мы все еще не знаем наверняка, какая теория успешно объединяет в себе общую теорию относительности и квантовую механику, хотя нам довольно много известно о том, какую форму должна иметь подобная теория. Во-вторых, любая модель, детально описывающая Вселенную в целом, должна быть слишком сложной математически, чтобы мы могли проделать вычисления для точных предсказаний. Так что придется довольствоваться приближениями, но даже и тогда проблема вывода предсказаний остается сложной.
Если принять предположение об отсутствии границы, выясняется: шансы обнаружить, что Вселенная следует большинству возможных историй, пренебрежимо малы. Но существует особое семейство историй, которые гораздо более вероятны, чем остальные. Эти истории можно уподобить поверхности Земли, где расстояние от Северного полюса представляет собой мнимое время, а величина широтного круга отображает пространственный размер Вселенной. Вселенная начинается на Северном полюсе в виде одиночной точки. По мере продвижения на юг широтный круг становится все больше, соответствуя расширению Вселенной в мнимом времени. Вселенная достигает максимального размера на экваторе и снова сойдется в одиночную точку на Южном полюсе. Даже если бы она имела нулевые размеры на Северном и Южном полюсах, эти точки не были бы сингулярностями, как не являются ими Северный и Южный полюса Земли. Законы природы будут соблюдаться в начале Вселенной, как они соблюдаются на полюсах нашей планеты.
История Вселенной в реальном времени, однако, выглядела бы совершенно иначе. Она начиналась бы с некоторого минимального размера, равного максимальному размеру истории в мнимом времени. Вселенная расширялась бы в реальном времени согласно инфляционной модели. Впрочем, не стоит теперь предполагать, будто Вселенная была так или иначе создана в правильном состоянии. Вселенная расширилась бы до очень больших размеров, но рано или поздно схлопнулась бы, став чем-то вроде сингулярности в реальном времени. Таким образом, в каком-то смысле мы все обречены, даже если держимся подальше от черных дыр. Только описание Вселенной на основе мнимого времени избавит нас от сингулярностей.
Теоремы о сингулярности в классической общей теории относительности показывают, что Вселенная должна иметь начало и что это начало следует описывать с помощью квантовой теории. Это, в свою очередь, приводит к идее, что Вселенная может быть конечной в мнимом времени, но не иметь границ или сингулярностей. Если вернуться в реальное время, в котором мы живем, сингулярности возникнут вновь. Несчастного астронавта, угодившего в черную дыру, по-прежнему постигнет печальный конец. Избежать встречи с сингулярностями он мог бы лишь в мнимом времени.
Возможно, это предполагает, что именно так называемое мнимое время является основным, а то, что мы называем
реальным временем, есть лишь плод нашего ума. В реальном времени Вселенная имеет начало и конец в сингулярностях, которые формируют границу пространства-времени и в которых нарушаются физические законы. Но в мнимом времени нет ни сингулярностей, ни границ. Так что, возможно, на самом деле мнимое время — основное, а то, что мы называем реальным временем, не более чем идея, придуманная нами для описания своих представлений о Вселенной. Но в соответствии с подходом, который я изложил в первой лекции, научная теория — это всего лишь математическая модель, которую мы вырабатываем для описания наблюдений. Она существует только в нашем сознании. А значит, бессмысленно спрашивать, что подлинно — реальное или мнимое время. Суть лишь в том, какое из них удобнее использовать для описания.
Ознакомительная версия.